
DVT
Debugger

For SystemVerilog, Verilog, Verilog-AMS, e, and VHDL

Simpler and faster code debugging

BENEFITS

Enables engineers to debug from the same place
where they write their code

Supports commonly used debug operations such
as adding breakpoints, stepping, moving up and
down the call stack, and changing values with a
single click

Minimizes the need for explicit printing or other
additional commands because the run-time
context is automatically fetched from the
simulator

Makes the call stack and local variables available
for analysis anytime the simulator hits a
breakpoint

Provides all DVT Eclipse IDE features that help
users navigate and understand the code:
hyperlinks, hierarchy browsing, finding usages,
tracing, and many others

Design and Verification Tools (DVT) Eclipse IDE is an
integrated development environment for SystemVerilog,
Verilog, Verilog-AMS, the e language, and VHDL. It helps
your design and verification engineers increase the speed
and quality of new code development, easily understand
complex source code, simplify the maintenance of legacy
code and reusable libraries, and accelerate language and
methodology learning.

The IDE is built on the Eclipse Platform. It consists of an
IEEE standard-compliant parser, a smart code editor with
built-in Universal Verification Methodology (UVM)
support, an intuitive graphical user interface (GUI), and a
comprehensive set of features that help with code
writing, inspection, navigation, and debugging.

DVT Debugger is an optional add-on module to DVT
Eclipse IDE. It integrates with all major simulators and
provides advanced debugging capabilities. It is unique
because it allows users to perform debugging from the
same place where they develop their code. It practically
eliminates the need to continuously switch between the
editor to understand the source code, and the simulator
to inspect variable values, set, enable or disable
breakpoints, or advance the simulation.

OVERVIEW

Breakpoints View enables users to quickly inspect
all breakpoints, enable or disable a specific
breakpoint, and define conditional breakpoints

Debug View allows users to move up and down the
call stack where the simulator stopped

Variables View displays the variables associated
with the stack frame selected in the Debug View,
including the arguments of the current function,
locally declared variables, class members, and
module signals, and allows users to change
variable values at runtime

Expressions View permits users to define and
watch expressions

Console View shows the simulation output and
allows users to enter simulator commands

THE DVT DEBUG PERSPECTIVE

The DVT Debug perspective is a GUI layout focused on
debug-specific activities. It provides simulation controls
such as step over, step into, and resume. It also shows
the simulation context in the editor and several dedicated
views:

From DVT Debugger’s smart editor, your debugging
becomes simple and fast. Users can add a breakpoint at a
specific line simply by double clicking in the editor.

Whenever the simulator hits a breakpoint, the editor
highlights the corresponding line.

The Debug View and the editor are always synchronized.
In the Debug View, when the user moves up and down
the call stack, the active line corresponding to the
selected stack frame is automatically highlighted.

Users can quickly see a variable value in the tooltip by
hovering over its name. They can also inspect a complex
expression by selecting it in the editor, and then adding a
watch to the Expressions View.

THE DVT EDITOR

Deploying DVT Debugger requires minimal simulation
flow changes. Users need to launch the simulation in
debug mode and specify the communication library using
simulator-specific arguments. DVT Debugger ships with
configuration examples to help your deployment.

FLOW INTEGRATION

The communication between DVT Debugger and simula-
tor is done through network sockets. This allows users to
connect to a simulation running on another machine, for
example from a “GUI jobs” machine to a more powerful
“batch jobs” machine that executes the simulation.
Another common use case is connecting from a machine
where the source code is available to a machine where
the source code is encrypted.

REMOTE DEBUGGING

The DVT Debug Perspective

The technical support team is available to promptly answer your
questions, provide you with training, and work with you to determine
your needs.

Your requirements and feedback are important. Whether you are
looking for technical support or new features to improve your design
and verification flow, AMIQ’s technical support team strives to answer
your requests in a timely manner.

TECHNICAL SUPPORT CONTACT AMIQ

Copyright 2025 AMIQ EDA S.R.L.
All rights reserved.

The information contained herein is
subject to change without notice.

DBG-0125-A4

SUPPORT & EVALUATION
support@amiq.com

SALES
sales@amiq.com

WEBSITES
www.eda.amiq.com / www.amiq.com

Simulation control:
step over, step into,

and resume

Move up and down
in the call stack

Double click to
add breakpoints

Active line

Current variable
value in tooltip

Inspect current
scope variables and

change values

See all breakpoints and
enable or disable them

Simulator output
and command line

